Appendix 1.3

1. Bounded convergent sequences. If {a,},, is a sequence that con-
verges to £ as n — oo and the a,, are bounded for alln > 1, i.e. |a,| < B
for some B > 0, then |¢| < B.

Proof by contradiction. Assume |¢| > B. Choose e = (|{| — B) /2> 0
in the definition of lim,,_,., a,, = ¢ to find N > 1 such that if n > N
then |a, — ¢| < e. Pick any nyg > N, then, by a form of the triangle

inequality
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making use of the assumption |¢| > B. Thus |a,,| > B, contradicting
the fact that |a,| < B for all n > 1. Hence assumption is false, i.e.
|/ < B.

2. Exponential Function: graphs The graphs for the results of Theo-
rem 2 are
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Though they suffice for the applications of the Sandwich Rule the lower
bounds seem particularly poor. It would appear from the graphs that
we should have

et —1 T

>1+4+ —.
T +2

e >1+z and
for all real z. Can you prove these, especially for negative x?
. Exponential Function In the lectures we proved
e =1 —af < |zf*
for |z| < 1/2. The method of proof can be extended.

Lemma Prove that for all k > 1,

for |z| < 1/2.

Solution Start from the definition of an infinite series as the limit of
the sequence of partial sums, so
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Then, by the triangle inequality, (applicable since we have a finite
sum),
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since (j +k+1)! > (k+ 1)! for all j > 0,
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on summing the Geometric Series, allowable when |z| # 1. In fact we
have || < 1/2 < 1, which gives the second inequality in
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for all N > 0. Now use the result that if a sequence {a,} converges
and |a,| < B for some B and all n then |lim, o a,| < B. Thus
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Combined with (6) gives the required result. |
. Example

et —=1—a 1
lim ———— = —.
z—0 2

Solution Take k = 2 in (5) and divide the resulting inequality [e* — 1 — x — 22 /2| <
23| /3 through by |z|* to get
e —1—x—12%/2 |a:|
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for |x| < 1/2. This is just shorthand for
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for |z] < 1/2. Let  — 0 when |z| — 0 so, by the Sandwich Rule,

et —-1—=z 1
Iim — = —.
x—0 1‘2 2

From the graph the lower bound in (7) looks weak.

Fix)=(e"x -1 —x)/x"2
g2{x)=1/2+x/6
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It looks reasonable that
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for all z € R. Could you prove this?
. Rates of Convergence When you have a result of the form lim, ., f (z) =
L the next question might be: how ‘fast’ does f (z) — L? How do you

measure this ‘speed’? Perhaps comparing f (x) — L with x tending to
a, i.e. consider the ratio (f (x) — L)/ (z — a) and its limit,

lim f(x)——L
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So after lim,_,oe* = 1 in Theorem 2i. we were interested in

et —1 et —1
= lim ,
z—0 . — 0 z—=0 T

Part ii. for Theorem 2.
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We can continue for the exponential function. From lim, o (e* — 1) /z =
1 we would be interested in
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the subject of Example 4.

Similarly, after limg_.osinf = 0, we would be interested in

the subject of Example 4. Since this limit is 1 we think of sinf and 6
tending to 0 at the same rate.

After limg_,g cos @ = 1 we looked, in Example 5, at

cosf — 1
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Since the limit is 0 we think of cos § tending to 1 faster than 6 tending
to 0. We can continue and look at
. owseel cosf — 1
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This was the subject of Example 6 where it’s limit was found to be
—1/2. We think of cos @ tending to 1 at the same rate as 6> tends to 0.
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