
Appendix 1.3

1. Bounded convergent sequences. If {an}n≥1 is a sequence that con-
verges to ℓ as n→∞ and the an are bounded for all n ≥ 1, i.e. |an| ≤ B
for some B > 0, then |ℓ| ≤ B.

Proof by contradiction. Assume |ℓ| > B. Choose ε = (|ℓ| − B) /2 > 0
in the definition of limn→∞ an = ℓ to find N ≥ 1 such that if n ≥ N
then |an − ℓ| < ε. Pick any n0 ≥ N , then, by a form of the triangle
inequality

|an0
| = |ℓ+ an0

− ℓ| ≥ |ℓ| − |an0
− ℓ|

> |ℓ| − ε = |ℓ| −
|ℓ| − B

2

=
|ℓ|+B

2
>

2B

2
= B,

making use of the assumption |ℓ| > B. Thus |an0
| > B, contradicting

the fact that |an| ≤ B for all n ≥ 1. Hence assumption is false, i.e.
|ℓ| ≤ B.

2. Exponential Function: graphs The graphs for the results of Theo-
rem 2 are
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and

(ex−1)/x

1+|x|

1−|x|

1/2−1/2−1 −1

x

y

Though they suffice for the applications of the Sandwich Rule the lower
bounds seem particularly poor. It would appear from the graphs that
we should have

ex > 1 + x and
ex − 1

x
> 1 +

x

2
.

for all real x. Can you prove these, especially for negative x?

3. Exponential Function In the lectures we proved

|ex − 1− x| ≤ |x|2

for |x| < 1/2. The method of proof can be extended.

Lemma Prove that for all k ≥ 1,

∣

∣

∣

∣

∣
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k
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r!

∣

∣

∣
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∣

≤
2 |x|k+1

(k + 1)!
(5)

for |x| < 1/2.

Solution Start from the definition of an infinite series as the limit of
the sequence of partial sums, so

ex −
k
∑

r=0

xr

r!
= lim

N→∞

N
∑

r=k+1

xr

r!
= xk+1 lim

N→∞

N−k−1
∑

j=0

xj

(j + k + 1)!
. (6)
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Then, by the triangle inequality, (applicable since we have a finite

sum),
∣

∣
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N−k−1
∑

j=0

xj

(j + k + 1)!

∣
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∣

≤
N−k−1
∑

j=0

|x|j

(j + k + 1)!
≤

1

(k + 1)!

N−k−1
∑

j=0

|x|j

since (j + k + 1)! ≥ (k + 1)! for all j ≥ 0,

=
1

(k + 1)!

(

1− |x|N−k

1− |x|

)

,

on summing the Geometric Series, allowable when |x| 6= 1. In fact we
have |x| < 1/2 < 1, which gives the second inequality in

1− |x|N−k

1− |x|
≤

1

1− |x|
<

1

1− 1/2
= 2.

Hence
∣

∣

∣

∣

∣

N−k−1
∑

j=0

xj

(j + k + 1)!

∣

∣

∣

∣

∣

≤
2

(k + 1)!

for all N ≥ 0. Now use the result that if a sequence {an} converges
and |an| ≤ B for some B and all n then |limn→∞ an| ≤ B. Thus
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∣

lim
N→∞

N−k−1
∑

j=0

xj

(j + k + 1)!

∣

∣

∣

∣

∣

≤
2

(k + 1)!
.

Combined with (6) gives the required result. �

4. Example

lim
x→0

ex − 1− x

x2
=

1

2
.

Solution Take k = 2 in (5) and divide the resulting inequality |ex − 1− x− x2/2| ≤
|x3| /3 through by |x|2 to get

∣

∣

∣

∣

ex − 1− x− x2/2

x2

∣

∣

∣

∣

≤
|x|

3
.

for |x| ≤ 1/2. This is just shorthand for

1

2
−
|x|

3
≤

ex − 1− x

x2
≤

1

2
+
|x|

3
(7)
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for |x| ≤ 1/2. Let x→ 0 when |x| → 0 so, by the Sandwich Rule,

lim
x→0

ex − 1− x

x2
=

1

2
.

�

From the graph the lower bound in (7) looks weak.

It looks reasonable that

ex − 1− x

x2
≥

1

2
+

x

6

for all x ∈ R. Could you prove this?

5. Rates of ConvergenceWhen you have a result of the form limx→a f (x) =
L the next question might be: how ‘fast’ does f (x)→ L? How do you
measure this ‘speed’? Perhaps comparing f (x)→ L with x tending to
a, i.e. consider the ratio (f (x)− L) / (x− a) and its limit,

lim
x→a

f (x)− L

x− a
.

So after limx→0 e
x = 1 in Theorem 2i. we were interested in

lim
x→0

ex − 1

x− 0
= lim

x→0

ex − 1

x
,

Part ii. for Theorem 2.
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We can continue for the exponential function. From limx→0 (e
x − 1) /x =

1 we would be interested in

lim
x→0

ex−1
x
− 1

x− 0
= lim

x→0

ex − 1− x

x2
,

the subject of Example 4.

Similarly, after limθ→0 sin θ = 0, we would be interested in

lim
θ→0

sin θ − 0

θ − 0
= lim

θ→0

sin θ

θ
,

the subject of Example 4. Since this limit is 1 we think of sin θ and θ
tending to 0 at the same rate.

After limθ→0 cos θ = 1 we looked, in Example 5, at

lim
θ→0

cos θ − 1

θ
.

Since the limit is 0 we think of cos θ tending to 1 faster than θ tending
to 0. We can continue and look at

lim
θ→0

cos θ−1
θ

− 0

θ − 0
= lim

θ→0

cos θ − 1

θ2
.

This was the subject of Example 6 where it’s limit was found to be
−1/2. We think of cos θ tending to 1 at the same rate as θ2 tends to 0.
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